Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes

Written by
Thom Leiding, Kamil Górecki, Tomas Kjellman, Sergei A. Vinogradov, Cecilia Hägerhäll, Sindra Peterson Årsköld
Published on
May 15, 2009
Subscribe to the Labmail
By subscribing you agree to with our Privacy Policy.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Key takeaways

This 2009 paper serves as the origin story of Labbot. Faced with the need to characterize the response of a pH sensitive probe with very high precision, Thom decided to automate the task. The device featured a CCD detector with the capacity to automatically record absorbance spectra as a set of computer controlled syringe pumps added small volumes of acid or base.It was clear already from the beginning that this method not only reduced the hassle of making these measurements, but also greatly improved the data density, quality and precision.

Abstract

Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu3, which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe’s pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe’s pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu3 was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu3 was found to be superior to the commercially available pH indicators.

Other Publications Featuring Labbot

Journal of the American Chemical Society
May 17, 2021

Charge Regulation during Amyloid Formation of α-Synuclein

Tinna Pálmadóttir, Anders Malmendal, Thom Leiding, Mikael Lund & Sara Linse

Electrostatic interactions play crucial roles in protein function. Measuring pKa value perturbations upon complex formation or self-assembly of e.g. amyloid fibrils gives valuable information about the effect of electrostatic interactions in those processes.

Read our takeaways
The Proceedings of the National Academy of Sciences (PNAS)
May 17, 2022

An aggregation inhibitor specific to oligomeric intermediates of Aβ42 derived from phage display libraries of stable, small proteins

Sara Linse, Pietro Sormanni, David J. O’Connell

The self-assembly of amyloid β peptide (Aβ) to fibrillar and oligomeric aggregates is linked to Alzheimer’s disease. Aβ binders may serve as inhibitors of aggregation to prevent the generation of neurotoxic species and for the detection of Aβ species.

Read our takeaways